## **IEE Japan EU Japan Center for Industrial Cooperation New Trends in the European Electric Power Business** - Suggestions for Japan -

## Hiroshi Sakuma CCIO ENECO | July 2021







## Personal introduction Hiroshi Sakuma



- 2020 Member of Management Board of Eneco
- 2019 Corporate Advisor, Mitsubishi Corporation
- 2014 EVP, Group CEO, Global Environment & Infrastructure Group, Mitsubishi Corporation
- 2012 Senior Vice President, Division COO, New Energy & Power Generation Div., Mitsubishi Corporation
- 2007 General Manager, Power Generation & Marketing, International Unit, Power & Electrical Systems Div., Mitsubishi Corporation, Tokyo, Japan
- 2002 President, Diamond Generating Corporation, Los Angeles, U.S.A.
- 1980 Joined Mitsubishi Corporation (Power Systems International Dept.), Tokyo, Japan

New Energy sub-committee member, METI (2014-2017)





## Agenda

### Brief introduction of Eneco in European context, followed by Eneco strategy





Strategy

 $\bullet$ 

History Development since 2007 Shareholders Mitsubishi Corporation and Chubu

Market characteristics Regulation & lessons learned Future developments

Strategies & portfolio One Planet targets Strategy execution: examples





# Eneco | ahead of change

Customer centric renewable strategy starting in 2007



(0





# Eneco at a glance





### Eneco activities in NL; DE; BE and UK, headquarter in Rotterdam NL (figures YE 2020)





# Eneco acquisition by Mitsubishi Corporation and Chubu

25 November 2019: announcement of acquisition by MC (80%) and Chubu Electric Power 20%); Eneco previously held by 44 municipalities



- Acquisition rationale highlights:
  - Europe is frontrunner in energy transition;
     Eneco is frontrunner in Europe
  - Eneco is a vertically integrated company so balanced risk profile as well as learnings that can be leveraged across the value chain
  - Similar chemistry of MC and Eneco Ο







## European energy market | characteristics



- High level of electricity market integration in NW-Europe due to high level of cross-border interconnection capacity and market harmonization
- Competitive and liquid electricity market with marginal price setting (so no explicit Capex coverage in market price)
- Rapidly declining cost of renewables and increasing corporate demand







# European energy market | lessons learned

### Theme



Decarbonisation: increasing share and cost reduction of renewables



Affordability and role of distributed assets



- Aspect
- Joint efforts of renewable development by policy and developers
- EU ETS carbon trade mechanism
- Rooftop solar is attractiv customer but also costl suppliers
- Low voltage grid issues
- EU 2030 energy efficiency targets are structurally Energy efficiency of demand lagging; joint effort by policy makers, energy suppliers side society and customers is required
- Grid development

### **Lessons** learned

| oles<br>makers | <ul> <li>Efficient risk distribution, e.g., substation and subsea<br/>cable offshore wind NL pre-installed by TSO reduces<br/>risk and hence cost of offshore parks</li> </ul> |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | <ul> <li>Develop resilient carbon markets (e.g., market stability reserve) to avoid ineffective price levels</li> </ul>                                                        |
| ve for<br>y to | <ul> <li>Netting as in NL is effective to accelerate rooftop solar<br/>but hard to reverse</li> </ul>                                                                          |
|                | <ul> <li>New grid tariff structures incentivizing consumers to sh<br/>their peak load (e.g., in Belgium) to manage grid costs</li> </ul>                                       |

Grid: very high investment required amidst planning challenges (see e.g., N-S corridor Germany)













# European energy market | future developments

More ambitious carbon targets requiring more system integration (physical and contractual)

### Key system challenges 2020 – 2030: how to balan the system?

- **Increasing volatility** short term, due to increasing sha renewables and limited electrification of energy demand 2030 most conventional electricity demand is sourced fr renewables
- **Missing money** challenge for all (flexible) power technology (under current market conditions)
- **System integration** of renewable assets and consumption decarbonize other energy demand segments
- Improved demand and supply forecast
- **Congestion** in the power grid that slows down demand electrification and renewable growth
- **PPA market growth** to facilitate integration and offset merchant risk of renewable electricity production

| ice             | EU direction                                                                                                                                                                            |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| are of<br>1; by |                                                                                                                                                                                         |
| rom             | <ul> <li>Last month: EU CO2 reduction target of 55%<br/>reduction vs. 1990 levels, a substantial increase<br/>from previous 40% reduction target</li> </ul>                             |
| ologies         |                                                                                                                                                                                         |
| otion to        | <ul> <li>Increasing emphasis on system integration to<br/>attain decarbonisation targets (e.g., power to X);<br/>implementation of revised Renewable Energy<br/>Directive II</li> </ul> |
| Lcido           | <ul> <li>July 2021: announcement of binding national<br/>targets for renewables (wind and solar); current<br/>drafting by European Commission</li> </ul>                                |
| I SIUC          |                                                                                                                                                                                         |
| _               |                                                                                                                                                                                         |
| -               |                                                                                                                                                                                         |
|                 |                                                                                                                                                                                         |





# European energy market | profile effect

Capture rate determined by deducting seasonality and covar from average prices

### **12-month renewable capture rate offshore wind**











# European energy market | imbalance

Imbalance driven by renewables and consumption deviations, with future uncertainties resulting in wide range of imbalance projections

### **Uncertainties on key drivers...**

### Imbalance inducing factors

- Renewable production deviation vs forecast
- Demand consumption vs forecast
- Regulatory/ market rules limiting flexible capacity

Imbalance resolving factors

- Curtailment of renewables
- New flexible demand such as eboilers and EV
- (battery) storage





Enec



### Offshore wind market trends Some observations



- Bigger turbines, larger project size, unclear turbine cost prospects
- Towards pay-to-build instead of subsidies
- More diverse equity holders including power companies, private equity funds, oil majors, and industry players (see Hollandse Kust South example) reflecting industry maturity as well as system integration
- Alignment of 4GW/year supply chain with 10GW/year of demand







# Business Strategies & Portfolio | Overview

Our goal is to accelerate the energy transition by putting our customers in charge, with a strategy that is structured along three axes: Customers, Integration and Assets



![](_page_12_Picture_5.jpeg)

![](_page_12_Picture_7.jpeg)

![](_page_13_Picture_0.jpeg)

# Eneco One Planet Plan: climate neutrality in 2035

Climate neutral operations and supply of energy to our customers

![](_page_13_Picture_3.jpeg)

- Provide power to our customers using only solar and wind energy
  - Phase- out natural gas by converting or closing our gas-fired power stations at the latest in 2035 and making natural gas-fired homes and buildings more sustainable with insulation, (hybrid) heat pumps and heat grids
- Accelerate sustainable heat through innovation and investment in renewable sources

![](_page_13_Picture_8.jpeg)

![](_page_13_Figure_9.jpeg)

![](_page_13_Picture_10.jpeg)

![](_page_14_Picture_0.jpeg)

## One planet: emission trajectory

### Emissions scope 1, 2, 3 (Mt CO2)

![](_page_14_Figure_3.jpeg)

Source: Eneco OPP whitepaper

15

### **Milestones & details**

- 1. 30% reduction in 2025
- 2. 60% reduction in 2030
- 3. 100% reduction in 2035
- Base year: 2019  $\bullet$
- 90% of emissions is scope 3 ullet
- Close cooperation with customers and significant co-investment will be ulletrequired

![](_page_14_Picture_13.jpeg)

![](_page_14_Picture_14.jpeg)

![](_page_15_Picture_0.jpeg)

## Strategy execution: example 1/3 Amazon corporate PPA allows Eneco to invest in zero subsidy offshore wind

![](_page_15_Picture_3.jpeg)

- Zero subsidy offshore wind in NL; total asset size 759MW in JV with Shell •
- 130MW contracted by Amazon •
- COD 2023

![](_page_15_Picture_9.jpeg)

![](_page_15_Picture_10.jpeg)

![](_page_16_Picture_0.jpeg)

## Strategy execution: example 2/3 Heat-pump with waste-water source to decarbonize district heating

![](_page_16_Picture_3.jpeg)

- Heat pump using waste-water as heat source for Utrecht district heating
- 25MW thermal capacity; enough to heat 10.000 • homes
- COD 2022/ 2023

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

![](_page_17_Picture_0.jpeg)

## Strategy execution: example 3/3 2022: lease of 48MWh battery developed by Giga Storage

![](_page_17_Picture_2.jpeg)

- 24MW/ 48MWh; location Flevoland NL
- Long term lease by Eneco
- Developed by Giga Storage

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

# Thank you

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)