

Japanese Perspective of Unmanned Maritime Vessels and GNSS systems

Nov. 11, 2016

国立研究開発法人海洋研究開発機構 JAMSTEC 吉田 弘 Hiroshi Yoshida

Technical Terms

- UMV: Unmanned Maritime Vessel 無人航行船
- USV: Unmanned Surface Vehicle 洋上無人探査機
- ◆ ASV: Autonomous Surface Vehicle 洋上自律探査機
- AUV: Autonomous Underwater Vehicle 自律型無人探査機
- ROV: Remotely Operated Vehicle 遠隔操縱型無人探査機

Scope

SIZE

• ボートサイズの無人航行船 (Pleasure boat class)

APPLICATIONS

- 科学調査 (Scientific research)
- ▶ 港湾・河川設備点検、海底地形調査、資源調査等 (Commercial)

HOW TO USE

- スタンドアローン (Stand alone)
- 母船に搭載して調査海域で展開 (ASV carried by a support vessel)
- 海中探査機との同時運用 (ASV and underwater vehicles)
- 遠隔操縦・自律航行 (Autonomous or Tele-control)

進むドローン輸送船の開発構想 Drone Ship

Rolls-Royce

約38兆円とも言われる海上輸送の市場において、安全で安く、 環境汚染も少ない輸送方法と して開発中

実用化へ向かうUSVの例

Practical use of an USV

Sea Hunter/ DARPA

実戦配備用で、運用コスト削減のた めに開発。2年間のテストを行う。

- ✓ 40 m, 135 tons
- ✓ 12 knots
- √ 70 days
- ✓ Sea State
- 2016年1月 進水 (Launched in Jan. 2016)
- 完全自律型 (Fully autonomous)
- レーダベースの衝突防止機能 (Obstacle avoidance based on a RADAR system)
- 常時監視型 (Under constant monitoring)
- テスト期間中は制御ステーションを設置 (A makeshift cockpit) 5

日本で運用されているUSV An USV in Japan

かんちゃん Kan-chan

Observation of aerosol and phytoplanktons
Cruising and fixed-point operations

- √ 8 m, 3 tons
- √ 3 knots
- √ 10 days
- ✓ FOMA/ Wide star
- 1998年プロジェクトスタート@東大海洋研(Launched in 1998)
- 八丈島周辺および岩手県大槌沖にて無人観測
- 2013年から福島第一原発沖合での放射線モニタリング (Radiation monitoring around the Fukushima nuclear power plant since 2013)

UMVs

130 kg Ocean Aero

90 kg Waveglider / Liquid Robotics

700 kg IHI, 海技研

?
Roboat/ MIT & Dutch universities

40m, 135 tons Sea Hunter/ DARPA

350 kg C-Enduro / ASV₇

Boat size UMV = ASV/USV

3.5 tons C-Worker / ASV

1.8 tons DELPHIS / MES and University of Tokyo

1.7 tons
Mariner/ Maritime Robotics

3 tons Mainami / MHI and JAMSTEC

無人船とAUVの同時利用 ASV-AUV applications

Why we need underwater vehicles

ITEMS	Surface	Shallow water	Deep sea
資源開発 Development of resources		Ø	Ø
気候変動 Climate change	otag	otin	Ø
環境調査 Environment	\square	\square	\square
港湾点検 Inspection in port and harbor		☑	
漁業•養殖 Fisheries		☑	
海洋エネルギー Ocean energy			
輸送 Carrier	otag	`	/

世界と日本のUSV-AUV動向 Topics of USV-AUV

- EU, USA: 洋上無人船(USV)の開発から市場形成へとシフト Stage shifts from development to product commercialization.
- 英国: ASVのパイオニアであり、海上無人機のルール作りを開始(2016/3)
 UK started rulemaking of UMVs in March 2016
- ROV, AUVの需要も高く、特にAUV市場は2桁成長(2040年には1兆円超え)
 ROVs and AUVs are in demand in USA and EU.
- 中国は海底基地を含む多大な投資による開発を展開中 China invests heavily in development of marine infrastructure including an underwater base.
- 陸と空のロボット化は、実用段階に入り、法整備も進む
 Robotization of land and air vehicles are in practical stage and legislation has moved forward.
- 一方日本は、洋上無人船の利用や技術開発は遅れている
 Practical uses and development of UMVs in Japan are still behind compared to the world

日本の市場 Japanese Market of Ocean Industry

	洋上 Surface	海中 Underwater	
Now	20兆円/年 (20 trillion yen / year)	数百億円/年 (Multibillion-yen / year)	
~2020	? 漁業·養殖業 fishery 輸送 marine transportation 石油備蓄 oil stock 港湾整備 harbor improvement	? 漁業•養殖業 fishery 港湾整備(水中) harbor improvement	
2030	?	海洋発電メンテ ocean energy maintenance メタハイ methane hydrate 海底鉱物資源 ocean resources	

Domestic ocean industry market is small

→ overseas deployment and/or market creation are needed

1

ASV relays AUVs' information

基本的なASV-AUVの使い方 ASV-AUV operation

Pipeline inspection

Sonar Laser Scanner Camera

Creating bathymetry map

Observation of crustal movement

Application areas of the system

✓ 海底地殼変動観測 (Observation of Ocean Crustal Movement)

✓ 資源探査: (Ocean Resources Exploration)

✓ 生物調査: (marine organism Investigation)

Technologies improvement needed

- 遠隔操縦とマンマシンI/F(Tele-operation and MM-I/F)
- 自律航法(Autonomous Navigation and Guidance)
- 測位(Positioning)
- 他船認識と衝突回避(Recognition and collision avoidance)
- 動力源(Energy)
- 信頼性(Reliability)

Regulations

- 海上衝突予防法
 The Act for Preventing Collisions at Sea is the most important.
- 海上・海中ロボットのルール作りでは漁協の意見が重要
 It is important to reflect views of fisheries cooperative association on the rules.
- 公海や、他国領海での運用は?
 What will be the significance of the operations in the open sea.
- 他船舶や海洋構造物との衝突回避方法は?
 How do you avoid collisions?
 - i. 自動認識 (Automatic recognition)→ Probability of misjudgment?
 - ii. 遠隔監視 (Tele-monitoring) → Mandatory twenty-four-hour supervision?

ボートサイズ無人船 (ASV) 実用化にむけて Toward the realization of ASVs

Regulation 団体や民間が 取組

Practical applications of ASV/USV

Market ほとんど無い BUT ポテンシャル大

Standardization & Test sites 県や国が取組

Commercialization 数社の民間 が取組 Technology development 国研、民間が 取組

個別な取り組み individual actions

相互協力による統一的な取り組み Unified actions

END