DIANA assay for inhibitor screening

Overview and collaboration proposal

Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic

DNA-linked Inhibitor ANtibody Assay

DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening. Navrátil et al. Nucleic Acids Res (2017); DOI: 10.1093/nar/gkw853

DIANA for screening: overview

Application	 Screening of compound libraries for new inhibitors / ligands of target proteins Successfully tested and validated on multiple target proteins and protein families assays for new targets straightforward to develop¹ 	
Key advantages	 Extremely high signal to noise ratio (Z' > 0.9; CV < 5%) Quantitative: compound K_i directly measured from a single well, hits ranked by inhibition potency, easy to screen for specificity in protein family Sensitive : sensitive hit discovery, ultra-low false-positive and false-negative rate Robust: works with unpurified protein, no interference or non-specific binding Cost-efficient: very low compound consumption, allows for compound pooling leading to reduced screening costs and time 	
Potential customers	 Pharma and CROs screening facilities: automated HTS drug discovery Research institutions: small-scale screens of in-house libraries against targets of interest (libraries of ~10k compounds can be screened in few 96-well plates) 	

1. Assuming at least one small-molecule inhibitor (even non-specific) exists and have suitable chemistry for modification.

DIANA for screening: 5-step protocol easy to implement in most screening facilities

1. No temperature sensitive incubations. Flexibility in incubation times. Tolerates high DMSO contents.

Key advantages: quantitative screening with broad dynamic range

Quantification of affinity from a single read

- Accurate determination of K_i from measurement at single concentration of tested compound
- Screening hits ranked by the inhibition potency
- Possible to test **specificity against whole protein families** in a single run

Purified PSMA standard was titrated with PSMA inhibitor. Measured inhibition constants were stable over more than 5 orders of magnitude of inhibitor concentration

Precise over broad concentration range

- Due to the qPCR detection, the same assay conditions can be used to precisely determine K_i of compounds over ~7-log range (e.g. 10pM 100μM)
- DIANA measurements validated by orthogonal assays

K_i (M); enzyme kinetics recombinant purified PSMA

 K_i of 41 different compounds with 7-log difference in PSMA affinity were determined using the same 100 μ M concentration. Measurements were validated by enzyme kinetics assays with serial dilution of inhibitors

Key advantages: ultra-sensitive and robust screening assay

Higher sensitivity of detection

- Extremely high signal to noise ratio (Z'>0.9, CV<5%)
- Sensitive in hit discovery (IC₅₀ = K_i)
- Ultra-low false-positive and false-negative rates
- Easy counter-screen setup to exclude false negatives

Due to high sensitivity and low background, hits are identified in DIANA screening even in libraries, which failed to produce any hits in conventional screening techniques.

Does not require recombinant protein

- Possible to screen inhibitors even with small amounts of targets endogenously present in body fluids – no need for purified recombinant protein
- Only picograms of target protein are sufficient to test the compound's activity¹
- No fluorescent/colored compound interference

 K_i (M); DIANA recombinant purified PSMA

1 μ l of human sera containing approx. 5 pg of endogenous PSMA was used for testing a compound's activity, with the same results as when using recombinant purified protein

Key advantages: compatibility with pooled compound screen offering high cost-efficiency

- Compounds pooled prior to initial screening only wells with strong hits subsequently analyzed per individual compound
- Enabled by **quantitative** nature of the assay, ultrahigh sensitivity (screening at low concentrations) and ultralow false positive and false negative rate
- Pilot study: strongest hits in a library of >2000 compounds identified using only two 96-well plates¹

• In progress: screening of ~25,000 compounds in a single 384-well plate with 80 compounds per well

... leading to highly cost-efficient screening

- Significant **reduction of time required** to complete the screening project
- Unparalleled **low screening costs** (also considering low amount of protein and probe required)

- Enhanced screening capabilities even for smallscale academic and R&D labs:
 - Typical academic research library of 2000 compounds can be screened for inhibition potency to target using a kit containing only two 96-well plates¹
 - Small screening facility with a single 384-well plate qPCR machine is able to screen up to ~0.5 million compounds per day²

^{1.} First 96 wells-plate: initial screening run with 24 compounds per well. Second 96 wells-plate: subsequent analyses of 4 strongest pools for K_i of individual compounds

^{2. 16} plates per day (30 min qPCR) x 320 wells per plate x 80 compounds per well = 16 x 25600 = 409,600 compounds

Catalogue of targets: expanding range of assays for commercially relevant targets

Status	Target	Relevant therapeutic area	Screening projects	
Assay ready for screening	Prostate specific membrane antigen (PSMA)	Oncology (Prostate cancer)Neurology (CNS)	 Search for new scaffolds with desired pharmacokinetics 	
	Carbonic anhydrase family (CA-II, VII, IX, XII)	 Oncology 	 Search for new specific inhibitors with desired pharmacokinetics 	
	Fibroblast activating protein (FAP)	OncologyMetabolic disorders	Screen for new scaffolds	
	FcγRI receptor, Glutamate carboxypeptidase III, Influenza neuraminidase, MTH1,			
Priority pipeline	Methyl transferases (e.g. EZH2)	OncologyEpigenetics	 Screen for specific inhibitors (no off- targets) 	
	Hydroxysteroid dehydrogenase	Woman health (Endometriosis)Oncology (Breast cancer)	Search for new inhibitor scaffolds	
	Kinases	Multiple therapeutic areas	 Pan-kinase probe allowing screening of inhibitors for any kinase target 	
	Insulin receptor family	Hormonal disordersOncology	Screen for specific ligands	
On demand	Assay can be promptly developed on demand to majority of relevant protein targets ¹			

1. Assuming at least one small-molecule inhibitor (even non-specific) exists and have suitable chemistry for modification.

targets

Our proposition: looking for partnerships to introduce DIANA to drug discovery market

	Our proposition	Potential partners
Assay development and licensing for screening projects	 We support implementation of assay at partner's site and its adjustment to the screening project needs We synthesize the detection probe and provide other reagents required We can develop DIANA based screening assay for any new target of partner's interest 	 Pharma screening center¹ CRO² Academic screening facility
2 HTS screening services	 We screen partner's compound libraries for hits to DIANA compatible targets and return quantification of their inhibition potency We can run mid- to high-throughput screening projects at our facility (up to 10⁶ compounds in a pooled compound setup) 	 Pharma Academic research groups³ Screening facility network
3 Distribution of 'screening kits'	 We co-develop ready-made screening kits and optimized instrumental setup – see details in Appendix We distribute via partner's product catalogue to research laboratories and screening facilities for application in small-scale screening experiments 	 Lab technology / chemical distributor Instrument manufacturer

1. Non-exclusive licensing deal for screening the specific target existing with a major global pharma 2. Ongoing collaboration with European CRO 3. New inhibitor scaffolds already identified in in-house library screening project

Contacts for enquiries & other resources

Contacts

Václav Navrátil – Head of R&D

- vaclav.navratil@uochb.cas.cz
- Methodology questions, assay development requirements

Jaromír Zahrádka & Martin Dienstbier – TTO

- zahradka@iocb-tto.cz, dienstbier@iocb-tto.cz
- Business questions, collaboration deals

Other contacts

• Martin Fusek, Jan Konvalinka

Further resources

Research paper

- Navratil et al. (2017): DIANA for sensitive and selective enzyme detection and inhibitor screening. Nucleic Acids research
- Screening methodology & Clinical diagnostics papers. *In preparation*

Introductory video

• www.youtube.com/watch?v=hrh82euICfU

Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences.

Flemingovo namesti 2, 16610, Prague 6, Czech republic

Appendix: DIANA-based kits for small-scale screening can be developed for range of targets

